Analysing the Link between Global Warming, Hurricane Patricia, and Future Tropical Storms


For a brief time, Hurricane Patricia had taken America by storm (pun definitely intended). On the night of Wednesday October 21st, Patricia was an under-the-radar tropical depression that drew little attention. Then, due to a combination of high ocean temperatures, low pressures, and low wind currents, Patricia began to grow at a rate that astounded and terrified not only scientists, but much of America as well.1 By the morning of Friday October 23rd, Patricia was “the most powerful storm ever measured by the U.S. Hurricane Center.”2

Patricia’s rapid growth and destructive power has largely been attributed to the weather phenomenon known as El Nino, when the temperature of the Pacific Ocean near the equator rises and the air pressure in the eastern Pacific Ocean drops. But as Patricia was dominating headlines across the country, many media outlets also chose to focus on the effect climate change, more specifically global warming, has had on the destructive potential of hurricanes. Many of these articles argued that as global warming continues, tropical storms will increase in strength and danger, and cite Patricia as an example. Furthermore, many of these pieces called for steps to counter global warming to mitigate the future danger of hurricanes, as well as advocated for stronger hurricane defenses to prepare for more powerful storms. However, a number of articles also proposed the opposite argument – Patricia’s record-breaking strength is not the result of global warming.

But looking outside of the realm of popular science, is Patricia evidence that global warming is causing more dangerous hurricanes?

The link between global warming and Patricia is tenuous at best; it is difficult to divorce the amplification of Patricia due to El Nino from the amplification due to climate change. Moreover, no single weather phenomenon can be solely attributed to a large-scale trend like global warming, nor should a single event or storm be held as indicative of a trend as widespread as climate change. While no scientific literature exists on the subject (Patricia is too recent a phenomenon), climate experts like Kerry Emanuel, who was among the first to predict that global warming would increase the strength of hurricanes, have declined to state that Patricia specifically is evidence of the link between climate change and hurricane intensity.3

However, looking beyond Patricia, does science indicate that global warming has led or will lead to more destructive hurricanes?

Well, kind of, but not really. Recently, scientific literature has increasingly found links between climate change and more destructive hurricanes. However, many of these articles stop short of explicitly stating a causal link between global warming and more powerful hurricanes. A 1987 article in Nature by Kerry Emanuel predicted a significant increase in the destructive potential of hurricanes due to greenhouse gas-induced climate change, but the increase of the magnitude of Emanuel’s predictions has not been seen.4

Emanuel returned to the subject in 2005 and demonstrated an increase in the destructiveness of hurricanes that correlates strongly to increased ocean temperatures.5 Webster, et al. also found an increase in the number of category 4 and 5 hurricanes, between 1970 and 2005, which was, in their words, “not inconsistent” with models that correlated increased hurricane intensity with global warming.6 However, both these studies conceded that the measured increases could be within normal variance of hurricane intensity.

Two recent studies in Nature Geoscience tied increased hurricane intensity to greater economic losses on the United States, but both qualified their results with the statement that increased hurricane intensity cannot clearly be tied back to climate change.7,8

The end result: scientists have not disproven the notion that global warming will lead to more powerful hurricanes, but they haven’t definitively proven it either. The reality may be that scientists will not be able to definitively state this link exists until these stronger storms are actually upon us. However, even without definitive proof, the evidence in favor of the notion continues to grow.

Works Cited:

  1.       Vance, E. (2015, October 23). How Hurricane Patricia Quickly Became a Monster Storm. Retrieved from
  2.       Chandler, A. (2015, October 23). Bracing for Patricia. Retrieved from
  3.       Mooney, C. (2015, October 23). Why record-breaking hurricanes like Patricia are expected on a warmer planet. Retrieved from
  4.       Emanuel, KA. (1987). The dependence of hurricane intensity on climate. Nature, 326, 483–485.
  5.       Emanuel K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.
  6.    Webster, PJ, et al. (2005). Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science, 309 (5742), 1844-1846.
  7.       Hallegatte S. (2015). Climate change: Unattributed hurricane damage. Nature Geoscience, 8, 819–820.

8.       Estrada, F, et al. (2015). Economic losses from US hurricanes consistent with an influence from climate change. Nature Geoscience, 8, 880–884.

Posted in Uncategorized | Comments Off on Analysing the Link between Global Warming, Hurricane Patricia, and Future Tropical Storms

The Human Microbiome: Slowly Getting There



At this point in time, the study of the human microbiome is not a novelty. Quite a lot of time and money has gone into pursuing the promising field, hoping that collecting data from the trillions of microorganisms in and on our bodies will offer insights into how they affect health and diseases. While the microbiome has bene shown to heavily affect us—the food we eat, our immune system and infections, organ developments, even behavioral traits—our knowledge regarding the microbiome is still extremely limited. The goal of predicting an individual’s propensity for certain diseases (and ultimately preventing them) using the human microbiome seems more distant than not.

Part of the reason of why this research seems to be progressing slowly is the vast amount of data that needs to be processed and the time required to amass it. Specifically, months are required for bacteria collection (mainly from feces—relatively unappealing to the masses and probably another reason the field is not popular) and for gene sequencing. Biotech companies such as Biomiic have started working on how to process and present collected data at a much faster rate (as reported in the following article

Once data can be processed more powerfully, perhaps the field will advance rapidly. After all, even the world’s largest collaborative biological project—The Human Genome Project—was only possible because of remarkable progress in sequencing and computing technology.Reynaldi1Pic1

Another reason that often comes up is practicality. To what extent can we utilize microorganisms for therapeutics purposes? A lot of the bacteria seems impossible to be cultured, and even then, we don’t know how effective treatments with microbes are (though in certain cases they have been proven to be very succesful, as in the famous case of C. diff infections: ).

In any case, the study of the human microbiome is extremely valuable as our microbiome is an integral part of our lives. Perhaps once it gains more popularity and funding, more will be discovered regarding these organisms that call us their home.

Posted in Uncategorized | Comments Off on The Human Microbiome: Slowly Getting There

The Enigma of the Brain


The 1,200 cm^3 mass of neurons inside our heads, more commonly known as the brain, has been frustratingly elusive in its nature for as long as we’ve known of its existence. How does it work? What does ours, as humans, do so differently from everyone else’s? What is it about the brain that even makes us “human”? These questions have long been tantalizing scientists, take philosophical dead ends, and leave us with more questions than when we started. But now, a ground-breaking project is bringing us one step closer to answering those questions.

The Human Connectome project is split between two consortia; Washington University, University of Minnesota, and Oxford University launched the first project while Harvard, MIT, and UCLA followed close behind. Over five years, the macro-cortices of 1,200 patients (twins and their siblings) will be analyzed and the data will be used to map the neural connections that create the massive network within our brains. By using resting-state functional MRI and diffusion imaging, the scientists will slowly be able to uncover the details of brain connectivity. With structural and functional MRI, they can also determine the shape of the cortex and the network’s relationship to behavior.

With an estimated 100 billion neurons comprising the average adult brain, there are over 100 trillion possible neuronal connections, or synapses, within every single person in a unique configuration. Taking on the challenge of mapping every single one of those is no small task, but the insights gained from it could revolutionize our understanding of the brain and facilitate research in many brain disorders such as autism, Alzheimer’s, and schizophrenia.

But most of all, this research could reveal a little more to the secret of what makes us human, and what makes every one of us a unique addition to this world.

Posted in Uncategorized | Comments Off on The Enigma of the Brain

Scientists Selling Genetically-Engineered Micro-Pigs



Who doesn’t love things that are fun-sized? While most pet owners would gladly keep their furry friends baby sized forever, a group of scientists in China has taken things a step further. Geneticists from leading genomics research institute BGI in Shenzhen, China have begun selling genetically engineered micro-pigs as pets starting at US$1600.

By deactivating a growth hormone receptor or GHR gene, scientists have effectively stunted the growth of Bama pigs. Normally mature pigs weigh up to 100 pounds, but mature micro-pigs grow to only about 30 pounds, or the size of an average dog. By introducing an enzyme called transcription activator-like effector nucleases, or TALENs, to the cloning process, scientists were able to disable one of two growth hormone genes that cause Bama pigs to mature to their full size.

Of course, cloning Bama fetuses comes with adverse health effects and shortened lifespan, as evidenced by other cloned mammals, such as Dolly the sheep. However, by breeding the genetically engineered male micro-pigs with normal female pigs, half of the offspring are born as micro-pigs without the adverse health effects of being born as clones.

Having more similar genetic and physiological makeup to humans than the typical lab rat, but often rejected for lab work for their large size, micro-pigs were originally intended to serve as subjects for human disease in genetic research. However, a fringe pet market for unusually small animals has given their products new purpose. As of now, BGI states that profit is currently their main objective with their new micro-pigs.

Posted in Uncategorized | Comments Off on Scientists Selling Genetically-Engineered Micro-Pigs

Recent Breakthroughs in the World of 2D Materials

Author: Kevin P. Nuckolls

In the past few years, the search for new and exciting two-dimensional materials has taken over both the field of material science and nanotechnology. These materials have displayed previously unimaginable characteristics, including their novel electronic properties or extraordinary mechanical characteristics, making them some of the best candidates for solving some of the world’s toughest problems in numerous of scientific disciplines. One of the most promising candidates in field of research is graphene, a single-atom thick layer of carbon atoms arranged in a hexagonally tiled formation.

Researchers at Cornell University have become interested in some of the mechanical properties of graphene. Some of the most significant findings have been discovered by a man named Paul L. McEuen, who is the corresponding author on the newly published Nature paper entitled “Graphene kirigami”. McEuen realized that a sheet of graphene, given its strength and resilience, could be used to build complex three-dimensional structures by playing an analogous role to paper in the art of kirigami. The word “kirigami” is derived from the Japanese words “kiru”, meaning “to cut”, and “kami”, meaning “paper”. The ability to fold and cut sheets of graphene into a seemingly infinite number of nanoscale, durable structures could revolutionize the role graphene plays in a number of research fields.

kevinpic1                            Simple kirigami spring made of (a) paper and (b, c) graphene

McEuen’s group first sought to identify whether or not graphene has the correct physical characteristics to be used for kirigami. One of the most important material parameters for kirigami is a material’s Föppl-von Kármán number, which is a ratio of the material’s in-plane stiffness to out-of-plane bending stiffness. Using several different nanoscale material testing methods, his group found that the number associated with graphene was very similar to that of paper, making it an excellent medium for kirigami. With these promising results, his group proceeded to successfully cut and fold sheets of graphene into simple, nanoscale mechanical systems, such as springs and hinges. These devices can be manipulated using not only physical means, but also magnetic means by attaching the ends of the springs or hinges to small blocks of magnetic material. This feature would allow for remote control over such systems, thus allowing for a myriad of new applications in nanotechnology.

Kevinpic2Various forms of graphene kirigami

Researchers at Shanghai Jiao Tong University have explored the possibility of creating new two-dimensional materials out of other group-IV elements, following the precedent set by carbon in forming sheets of graphene. Previously, two-dimensional, silicon-based silicene and germanium-based germanene had been synthesized and examined. The experimentally unprecedented synthesis and characterization of a material called stanene was achieved by a team lead by Jin-feng Jia, who is the corresponding author on the recently published Nature Materials paper entitled “Epitaxial growth of two-dimensional stanene”. Stanene is a 2D allotrope, or atomic configuration, of tin atoms that form a buckled honeycomb lattice, comprised of two triangular, offset sublattices of tin atoms. The thickness of this system is about 0.1nm, which fluctuates slightly depending on the material’s surroundings.


Molecular structure of stanene, top and side views

Jia’s group was able to grow these single layers of stanene upon a substrate of Bi2Te3 using a technique called molecular beam epitaxy (MBE). Through MBE, a substrate is placed in a chamber at extremely high vacuum pressures. The material one wishes to deposit is then heated until it becomes gaseous, which condense upon the surface of the substrate. Reflection high energy electron diffraction (RHEED) is many times used to monitor the progress of this process. Jia’s group then analyzed the atomic and electronic structures of the stanene and Bi2Te3 system and found that experimental data they obtained agreed quite well with their theoretical predictions and calculations.

Kevinpic4Image of 2D stanene on Bi2Te3 using scanning tunneling microscopy, top view


If you’d like to read more about the developments in graphene kirigami, check out the full paper at the following link:

If you’d like to read more about the developments of stanene, check out the full paper at the following link:



Posted in BSJ Blog, BSJ Staff | Comments Off on Recent Breakthroughs in the World of 2D Materials

Earth Week 2015: How you can help

Every year, we celebrate Earth Day on April 22 to mark the anniversary of a movement that started in 1970. The founder, Gaylord Nelson, then a US Senator of Wisconsin, thought of the idea after the 1969 massive oil spills in Santa Barbara, California. Inspired by the student anti-war movement (much of which started here at Berkeley), he realized that by introducing sustainability into the public conscience, he would be able to force politicians to pay attention to environment protection. As a result, on the 22nd of April, thousands across the nation took to the streets to raise awareness about sustainability, and hundreds of protests were organized. The movement lives on today as Earth Day, and, more recently, has been extended to Earth Week.

You don’t have to plant a forest, or save the whales, to make a difference this Earth Week. Starting small can make a tremendous difference if everyone pitches in. Here are some ways you can help:

1. Cancel your paper bills and switch to online bills. This can save 23 pounds of wood and 29 pounds of greenhouse gas emissions every year.

2. Rather than visiting a large grocery store chain, buy locally produced sustainable food.

3. Get into the habit of carrying around a reusable mug for coffee or tea. This way you’ll always have it handy whenever you need a pick-me-up.

4. Go vegetarian once a week. Did you know that it requires around 2,500 gallons of water to produce one pound of beef? Considering that California is in a drought, you can really help out by going meat-less as often as possible.

5. Take shorter showers, and skip baths entirely.

6. Open your windows and turn off the lights! You’ve probably heard this one before, but it can’t be said enough. Since the days are getting longer now, there’s no reason your lights should be on between the hours of 9 in the morning and 6 in the evening.

7. Start actively recycling and composting. It can be confusing knowing exactly what to put in each different trash bin, but this post from the Daily Clog can help you out with that.

8. Reevaluate your shopping choices: there are so many brands available to us, and as students, we generally pick the cheapest one. However, there’s always a way to find a balance between price and sustainability, so do some research to find the products that are the least damaging to the environment.

9. Take reusable bags when you go grocery shopping. Grocery shopping for students is a whole process, so plan it out so that you have reusable bags with you when you go.

10. Share and discuss! Share these ideas with others, and raise awareness about the environment, sustainability, and helping out in your community.

Posted in BSJ Blog, BSJ Staff | Tagged , , , | Comments Off on Earth Week 2015: How you can help

Editor’s Picks

Light’s dual nature as both a particle and a wave has confused us all since the theory was proposed. For the first time, scientists have captured a photograph of light behaving as both a particle and a wave, using electrons to image the light.

Ever wonder why you really can’t eat just one potato chip? In this investigative journalism piece, Michael Moss explores the science behind addictive junk food, gathering research from multiple interviews, observations, and scientific studies.

If you’ve ever heard an a cappella performance (Pitch Perfect, anyone?) you’ve heard someone beatboxing. The range of sounds that the human voice can produce is truly amazing. This article explores some of the mechanisms behind the phenomenon, and how this may elucidate the processes in human communication.

Posted in BSJ Blog, BSJ Staff, Editor's Picks | Comments Off on Editor’s Picks

Editor’s Picks

After a hiatus of nearly a year, Berkeley Scientific Journal is proud to announce that our blog is back! Our aim is to provide a platform for young scientists to discuss issues they are passionate about, and share their thoughts with the public. “Editor’s Picks” is a new series of posts that will regularly feature great science journalism from all around the web.

An opinion piece, “If you want people to get vaccines – then listen” written by David Litt in Berkeley Science Review discusses the trending bias against vaccination, and why that may be the case. Litt explores some of the reasons behind this fear, and provides some great insight on how to start a dialogue about vaccination.

Art meets science in this stunning series of images from Colin Salter’s book “Science is Beautiful: The Human Body Under the Microscope” which provide a great way to visualize some of the more abstract scientific concepts we hear about.

In honor of yesterday, the Pi Day of the century, Manil Suri’s “Don’t Expect Math to Make Sense” tries to grasp what pi truly represents, and how it manifests itself all around us. The enigma surrounding pi begs the question, is the universe more complicated than we could ever imagine, or is it maddeningly simple?

Posted in BSJ Blog, BSJ Staff, Editor's Picks | Tagged , , | Comments Off on Editor’s Picks

The Reading Revolution

For years scientists have asserted that language is the one characteristic that sets humans apart from animals. The ability to speak and communicate is believed to have emerged around 50,000 years ago, along with the development of tools, and the increase in brain size. Scientists have identified the Broca’s and Wernicke’s regions as associated with language, but the ability to read is a little more perplexing. The written language has not been around long enough to influence evolutionary changes, and yet we know that something happens to our brain when we read.

A few years ago, Stanislas Dehaene, a cognitive neuroscientist at the Collège de France, teamed up with colleagues to conduct a study on 63 volunteers – 31 who had learned to read in childhood, 22 who had learned as adults, and 10 who were illiterate. What he found is that those who could read demonstrated a stronger response to the written word in several areas, including areas in the left lobe of the brain associated with spoken language.

However, that’s not all. Recently it was found that reading doesn’t just activate regions like Broca’s and Wernicke’s, but also, other areas associated with the content of what you are reading. A word such as ‘cinnamon’ activates areas of the brain associated with smell. Apparently, the brain doesn’t make much of a distinction between reading about something and actually experiencing it. Reading tricks the brain into thinking it is doing something it’s not, which is called embodied cognition. As we read more and more, the experiences and stories we absorb are used by the brain to understand emotions and social situations, and the brain is able to construct a ‘map’ of others’ intentions, called “theory of mind.”

An even more recent study published a few months ago involved testing 19 subjects as they read the book Pompeii by Robert Harris. After conducting fMRI scans on the subjects over the course of 19 days, it was concluded that after the reading, there was an increase in connectivity between the left angular/supramarginal gyri and the right posterior temporal gyri, regions which are associated with perspective and comprehension. Though these effects seemed to peak soon after the reading, and faded with time, more permanent changes were observed in the bilateral somatosensory cortex. Despite the implications of the study, people were too quick to publicize these results.

It’s easy to make the claim that x changes the brain in y number of ways, but this is a simplification of a very complex system that we still do not completely understand. While it may have been claimed that a certain part of the brain lights up during a specific activity, most of the brain is already busy with activity – a scientist can really only observe additional activity to that area. Not only did the study have too small a sample size and neglect to include a control group, but it also failed to make a clear distinction between the situations that the subjects were experiencing. How did they know that it was the reading that was making these changes? It is possible that these changes occurred due to the testing environment that the subjects were sharing for those 19 days.

Of course, I’m sure that the researchers had other methods to verify that the observed activity correlated to reading, but you can see why I’m not impressed by their conclusions. It’s been fairly obvious for a few years now that reading is workout for the brain and has long-lasting benefits that go beyond the basic language acquisition skills – there had to be a reason my parents always told me to turn off the TV and go read a book.

I don’t think we shouldn’t be asking if reading rewires the brain. Maybe, instead, we should be asking: does the way I read affect my brain? Does the way I process information change if I were to read a paperback versus a digital version?

Before 1992, studies showed that people read slower on screens, but since then, results have been more inconclusive. At a surface level, screens can drain mental resources and make it harder for us to remember things after we’re done. People also approach technological media with a state of mind that is less conducive to learning, even if it is subconscious. Reading a paperback, sometimes, just feels more real – though we may understand writing and language as abstract phenomena, to our brains, reading is part of the physical world.

As mentioned before, the brain is not hardwired for reading – the written word was only invented around 4,000 BC, and since then, our brains have had to repurpose some of its regions to adapt. Some of the regions excel in object recognition, to help us understand how different line strokes, curves, and shapes of a letter correspond to a certain sound, or how these letters, when joined together, can create a word. There are also regions that, perhaps more importantly, can create a physical landscape when reading a text, just in the same way that we can construct representations of terrain, offices, or homes, in our minds. When remembering certain information from a text, we often remember where in the text it appeared; in my copy of Pride and Prejudice, I can remember very clearly that Darcy professed his love for Elizabeth in the middle of a left-hand side page.

In this context, paper books have a more obvious topography than virtual books. A paperback is a physical, three dimensional object, whereas a virtual book is just that – virtual. A paperback has a left side and a right side, and eight corners with which the reader can orient himself. One can see where a book begins, and where it ends. One can flip through the pages in a book, and gauge its thickness. Even this process of turning pages creates a lilting rhythm, leaving a ‘footprint’ on the brain.

Screens and e-readers, on the other hand, interfere with the brain’s ability to construct a mental landscape. Imagine if you were using Google maps, but you could only use it in street view, walking through each street one at a time, unable to zoom out and see the whole picture at once. This is similar to what we experience when trying to navigate virtual documents.

Additionally, e-readers interfere with two key components of comprehension: serendipity, and a sense of control. Readers often feel that a specific sentence or section in a book reminds them of a previous part, and they want to flip back to read this part again. They also like to be able to highlight, underline, and write notes in a book. Thus, while reading a paperback involves the use of tactile, auditory, visual, and olfactory senses, virtual text only requires the use of one: visual.

Erik Wastlund, a researcher in experimental psychology, has conducted rigorous research on the differences between screen and paper reading. In one experiment, 72 volunteers completed a READ test (a 30 minute Swedish-language reading comprehension test). People who took the test on the computer scored lower, on average, and reported feeling more tired than those who took the test on paper, showing that screens can also be more mentally and physically taxing.

The problem is that people take shortcuts when reading on a device, such as scanning, and using the search tool to locate specific keywords, instead of reading the entire document at once. They are also less likely to engage in metacognitive learning regulation when reading on screens, which involves strategies such as setting specific goals, rereading certain sections, and testing oneself as to how well the material has been understood along the way.

So far, e-readers have been trying to copy the paperback: e-readers reflect ambient light just like books, there are ways to bookmark and highlight text, and some have even added a ‘depth’ feature, which makes it seem like there are piles of pages on the left and right sides of the screens. Even so, many will agree with me when I say – it’s just not the same.

There are certain advantages to virtual text and media presentation that have not been fully realized yet. There are a few apps on the marketplace which are trying to revolutionize the way we take in information, such as Rooster, which divides books into manageable 15-minute sections to read on the way to the office, or Spritz, in which content is streamed one word at a time, working around the Optical Recognition Point of the eye. And yet, content production is still revolving around the same models that have been in circulation for hundreds of years.

Learning is the most effective when it engages different regions of the brains, and connects different topics. Some tools have the right idea – the popular Scale of the Universe feature uses the scroll bar to communicate an idea that could not have been done as effectively on paper – but interactive media still hasn’t reached its full potential.

So maybe people have the wrong idea with trying to replicate the experience of a paperback. Maybe we should be heading in a completely different direction.

Image sources: featured photo

Posted in BSJ Blog | Tagged , , | Comments Off on The Reading Revolution